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Abstract. For non-null electromagnetic fields, a pair of covariant field projection opera- 
tors is obtained which separate four-space into mutually orthogonal two-flats spanned by 
the field eigenvectors associated, respectively, with real or imaginary eigenvalues. In 
appropriate limits, these projections generalise the notion of components perpendicular to 
and parallel with a particular E or B direction. These operators are used in a relativistic 
covariant analysis of the motion of a charged particle subject to a constant electromagnetic 
field. The covariant projections of the motion are uncoupled and separate orbit equations 
for each projection are presented. This analysis is related to a generalisation of the 
guiding centre concept. A covariant guiding centre treatment is developed and applied to 
the situation where slowly changing field inhomogeneities exist. 

1. Introduction 

When all its eigenvalues are distinct, the electromagnetic field tensor provides, via its 
eigenvectors, a field of basis vectors in terms of which an arbitrary four-vector may be 
decomposed. Furthermore, the subspaces spanned by those eigenvectors which are 
associated with either real or imaginary eibei ivalues provide a unique decomposition 
of the four-dimensional continuum into orth )genal two-flats, a decomposition which 
is meaningful even if the eigenvalues are doubly degenerate. In this paper such a 
decomposition is investigated in terms of the relativistically covariant projection 
operators that, among other things, generate quantities that generalise the notion of 
projections perpendicular to and parallel with a particular electromagnetic three- 
vector, be it E or B (in the limit that one of these is small). The utility of these 
covariant operators is then indicated with reference to the analyses of the motion of a 
charged particle in an electromagnetic field, and the use of these operators is related 
to a relativistic guiding centre decomposition of such motion. 

The organisation of this paper is as follows. First, in 8 2.1, we review some of the 
basic algebraic properties of F such as its eigenvalues and various product relations 
involving powers of F and its dual. In 8 2.2, we construct by means of projection 
techniques the eigenvectors of F and display equivalent eigenvector sets. The same 
type of technique is employed in 8 2.3 to construct covariant electromagnetic field 
projection operators. The nature of these operators is discussed, and various limiting 
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1070 D M Fradkin 

cases of their projection are given. Our covariant projection operators are shown to 
be a generalisation of the covariant operators devised for the case E .  B = 0 by Derfler 
(1976). (Similar operators for this special case had earlier been referred to by 
Mangeney and Signore (1974).) 

The covariant projections are utilised in § 3.1 to determine covariant expressions 
for the motion of a charged particle under the influence of constant electromagnetic 
fields. It turns out that the covariant projections decouple the equations of motion 
into two parts. One part describes oscillatory proper time behaviour and the other 
describes exponential proper time behaviour. For each projection of the motion there 
is an associated orbit equation, as well as an orbit equation for the motion as a whole. 
Section 3.2 is devoted to relating the two preceding projections of the motion to a 
covariant generalisation of the guiding centre of motion. 

In 0 4.1, the covariant approximate guiding centre motion of a charged particle 
under the influence of inhomogeneous fields is discussed. This approximation 
involves a time average for slowly changing quantities over a period of the presumed 
more rapid oscillatory motion. Covariant expressions for such a time-averaged 
guiding centre (which in a non-relativistic context has been termed by Jancel and 
Kahan (1966) as a ‘glide centre’ or ‘drift centre’) are obtained, and a covariant 
derivation of the various drift velocities is given in 0 4.2. The paper concludes with a 
simple derivation of the invariant guiding centre momentum-energy as well as an 
expression which relates to a covariant generalisation of the usual non-relativistic 
adiabatic electromagnetic moment. 

The concept of the guiding centre has been used extensively in plasma physics and 
astrophysics. Although perhaps the genesis of this concept lies with Hipparchus and 
Ptolemy, the idea that the instantaneous motion of a charged particle could be 
separated into an oscillatory motion superimposed upon the motion of the centre of 
the oscillation (called the guiding centre) is generally attributed to AlfvCn (1950) who 
made such a decomposition in discussing the non-relativistic motion of a charged 
particle generally spiralling around and accelerating along a B field direction and 
drifting normally to that direction in the presence of small field inhomogeneities. 
Later, others (for example, Hellwig 1955, Spitzer 1956, Northrop and Teller 1960, 
Northrop 1961, Kruskal 1965, pp 67-90, and Schmidt 1966) have discussed and 
amplified to some degree these non-relativistic arguments, and have examined in 
some detail the effects of specific inhomogeneities. The derivations yielding the 
various terms in the guiding centre drift and equation of motion tended to be rather 
involved, partially due to the non-covariant nature of the treatment. Some define the 
guiding centre position r, by following AlfvCn’s definition r, = r + c(eB2)-’p x B, while 
others directly sought expressions for the guiding centre by a suitable time average of 
the basic dynamical relations over a single period associated with the cyclotron 
frequency. 

In addition to a guiding centre description, AlfvCn and Falthammar (1963) intro- 
duced the idea of centre of gyration movement which they obtained by considering a 
(non-relativistic) transformation to a coordinate system in which no force exists on the 
particle except that of a magnetic field B. Of course, this type of description cannot 
apply to an arbitrary electromagnetic field since E .  B is a Lorentz invariant and hence 
one cannot find a reference frame (speaking from the standpoint of a relativistic 
generalisation) in which only a magnetic field exists unless it should happen that E and 
B are crossed fields or that to some desired approximation, E / B  << 1. For the non- 
relativistic treatment, Kruskal (1959, 1965, pp 91-102) has analysed the first-order 
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inhomogeneity corrections in terms of an asymptotic approximation to the exact 
motion (controlled by the parameter m / e ) ,  and Bernstein (1971) has devised a 
two-time-scales scheme to develop an iteration procedure to obtain higher-order 
terms. 

The literature referring to a relativistic treatment of guiding centre motion is much 
more sparse. A number of years ago, Hellwig (1955) did sketch a covariant relativistic 
approach based on a perturbative variation of constants technique applied to the 
oscillatory motion and he identified the modulus of the imaginary eigenvalue of 
(e/mc)F as the relevant frequency. His prescription for the motion of the guiding 
centre (which is called the ‘ersatzteilchen’ by him), based on a coupled set of equations 
involving a number of parameters, does not appear to lend itself reaily to an explicit 
description of the motion in terms of the initial conditions which must be applied to 
the dynamical equations. Later, in their discussion of charged particle motion in the 
earth’s field, Northrop and Teller (1960) quote expressions (without derivation), valid 
in the small-E regime, for the guiding centre motion of relativistic particles, 
accelerating along B and drifting perpendicular to B. Then, a lengthy treatment of the 
relativistic situation involving inhomogeneous fields was given by Vandervoort 
(1960). He expanded the equations of motion via a Taylor’s expansion about guiding 
centre variables in order to obtain differential equations for the gyration variables, 
and techniques of solution to successive orders of approximation for a number of 
relevant variables were indicated. The guiding centre motion and the question of the 
non-constancy of the adiabatic invariant was also considered by him. Again, it is 
somewhat awkward to extract results in terms of field quantities and initial conditions. 
More recently, Mangeney and Signore (1 974) adopt an averaged Lagrangian 
approach to obtain drift expressions for a relativistic particle in a strong magnetic field 
for the special case E .  B = 0. 

2. Algebraic properties of the electromagnetic field tensor 

2.1. Eigenvalues and product relations 

We shall adopt Minkowski coordinates (Latin indices ranging from 1 to 3, Greek 
indices from 1 to 4) so that the electromagnetic field tensor F has elements 

FCLy = -FV,, with Fij = eijkBkre4 = -iEj, (2.1) 

FFu = &,,Xpr. (2.2) 

and its dual F D  is defined by 

As is well known, the eigenvalues 77 of the field tensor consist of a set of two pairs, one 
real and the other pure imaginary, { v }  = {+b, -b, +iu, -iu}, where 

and 
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The parameter a is zero only when E. B = 0 and B 2  - E 2  S 0, whereas b is zero 
only when E. B = 0 and B2 - E 2  a 0. A null electromagnetic field is characterised by 
a = b = 0. The ratio E = b/a indicates the relative sizes of the magnetic and electric 
fields. If E = 1, then B2 = E2 but specification of this ratio does not in itself determine 
the relative size of IE.BI. If E<< 1, then B 2  is larger than E 2  and IE.BI<< IB2-E21. 
On the other hand, if E >> 1, then B2 is less than E' and again IE. BI<< IBZ'-E21. The 
eigenvalue a (cf 0 3.1) is directly proportional to the generalised cyclotron frequency 
appropriate to a charged particle oscillating in a constant, but otherwise arbitrary, 
electromagnetic field. 

In terms of the parameters a and b, the product relations (cf Synge 1956) satisfied 
by the skew-symmetric field tensors are 

FF = (b2 - a2) I  + FDFD,  (2.5) 
FFD = FDF = -sabI, 

FFF 
so that 

F' = (b2 - U 2)F - sabFD. 

Here s is a sign parameter defined by 

s = ( E .  B ) / J ( E .  B)J (2.8) 
and I is the unit 4 x 4 matrix with elements 

Power of F higher than the cubic may be reduced by invoking the Hamilton- 
Cayley theorem which states that each square matrix satisfies its own characteristic 
equation. Consequently, 

F4 + (U' - b2)F2 - (ab)'I = 0. (2.9) 
Hence, any power of F may be reduced to a linear combination of I, F, F2 ,  and F', or 
to a linear combination of I, F, FD,  and F2. In particular, it follows that 

F2" = (a2+  b2)-'{[b2" + (-l)"c'~2"]F2+(~b)2[b2(n-1)+(-l)n~2(n-')]I}, (2.10) 

from which one may establish that 

e@ = (a2  + b2)-'{(a21 + F2)[(cosh bt)I + b-'(sinh bt)F] 

+ (b21 - F2)[(cos at)I + a-'(sin at)F]}. (2.11) 

The special cases for a and/or b equal to zero may be recovered by taking the 
appropriate limits of this relation. 

For future convenience, we will display the matrix elements of F2 in terms of E 
and B: 

(F2)jj =BiBj+EjEj-SjJ32 

(2.12) 

For the special case a = b = 0, the vectors E, B and the unit vector n̂  = E X B / E 2  
represent an orthogonal triad, so then the matrix elements of F2 simply reduce to 

(F2)jj = -E2j&Ej 

(F2)jp = (F2)4j = -iE2fij 

(F2)44 = E'. 
(2.13) 



Covariant projections and guiding centre motion 1073 

2.2. Field eigenvectors 

We discuss first the situation in which all the eigenvalues of F are distinct. (The case 
of degeneracy is treated in the concluding paragraph of this section.) For a particular 
eigenvalue Q, where p is a label indicating a specific member of the eigenvalue set { }, 
the remaining numbers of the set are -q@, -iabTg1, and iabq;'. Thus, the associated 
eigenvector I,P satsifying 

(F,u - 77@4Lu)4! = 0 (no sum on p )  (2.14) 

may be constructed by means of a projective technique using the operator 

(F+ 77SI)(F-iab778l1)(F+iab77B1I) 

acting on an arbitrary four-vector Cp. Indeed, invoking the Hamilton-Cayley theorem, 

( F ~ ~  - T ~ s ~ ~ ) [ ( F +  7 7 ~ ) ( ~ - i a b 7 7 ; ~ ) ( ~ + i a b 7 7 ~ ~ 1 ) 1 ~ ~ =  0, (2.15) 

we note that the expression in square brackets itself may be taken to be proportional 
to * E .  

One may define the eigenvector (for fixed r )  as 

*R = i d  {(F + 77SI>[F2 + (ab/77@)2mr. (2.16) 

The assignment of different variables to the second index ( r )  produces four-vectors 
that are proportional since eigenvectors associated with the same eigenvalue are 
generated. This fact is reflected in the quadratic relation 

*Lea = 0 (no sum on p).  (2.17) 

Thus, using the result 

=2i(2v;+a2-b2), (2.18) 

one obtains 

= 2i(277; +a2-b2)$fa (no sum on p). (2.19) 

The quadratic relation involving summation of indices in the same position is quite 
different, yielding the result 

*%*!a = 0 = *Err*:* (no sum on p ) .  (2.20) 

Hence, $fa for fixed (Y is a null four-vector. 
Eigenvalue degeneracy can occur only if a particular v6 is zero, which in turn 

occurs only when IE.BI=ab =0,  i.e., whenever a and/or b equals zero. Equation 
(2.6) shows that F has no inverse then. In any of these singular F situations, the 
tensor F itself does not have a complete set of eigenvectors in terms of which an 
arbitrary four-vector can be expanded. Nevertheless, the eigenvectors it does have 
may be constructed by a procedure similar to that previously used. For example, for 
the doubly degenerate case b = 0, the operators (F2 + a21) and F(F f ia1) operating 
on an arbitrary four-vector (D produce eigenvectors associated, respectively, with the 
b = 0 and k ia  eigenvalues. For the quadruply degenerate case (a = b = 0), F2Cp is the 
eigenvector associated with zero eigenvalue. 

2.3. Electromagnetic field projection operators 

By the reasoning of the last section, the operator (F  - bl)(F + b1) when acting on 
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an arbitrary four-vector produces a four-vector which is composed of eigenvectors 
of F with associated eigenvalues of i i a ,  in other words, an eigenvector of F 2  with 
eigenvalue -a2. Similarly, (F - ial)(F + i d )  produces an eigenvector of F2 with 
eigenvalue b2.  Multiplying these operators by appropriate scalar factors so that 
idempotency results (cf equations (2.23) and (2.24)), one may thus define the follow- 
ing electromagnetic field projection operators: 

O'"'= - (a2+ b2)-'(F2- b21),  (2.21) 

and 
C7(b)= (a2  + b2)-'(F2 + a21). (2.22) 

These operators are each symmetric. Although they remain well defined if either Q or 
b equals zero (the doubly degenerate case in which E .  B = 0), they are not defined for 
the case of a null electromagnetic field (both a and b equal to zero). In the rest of this 
paper we shall exclude the null field from consideration and only deal with situations 
for which these operators are well defined. 

is an operator which projects into the 
two-flat subspace spanned by the eigenvectors of F having eigenvalues *ia. An 
equivalent description of this two-flat is that it is the subspace which is orthogonal to 
the two-flat spanned by the eigenvectors of F having eigenvalues *b. (As has been 
emphasised by Synge (1956, p 61), four-dimensional geometry permits the existence 
of mutually orthogonal two-flats.) Similarly O(b)  projects into the two-flat spanned by 
eigenvectors of F having eigenvalues i b  (which in turn is orthogonal to the two-flat 
characterised by the i i a  eigenvalues). 

Using equation (2.9), it is readily shown that these operators satisfy the pro- 
jection algebra 

@a'&"'= @a', (2.23) 

By its construction, it is apparent that 

, (2.24) @ b ) @ b )  = &b) 

(2.25) 

(2.26) 
Furthermore, the relationship of these operators to the eigenvectors of F2 may be 
expressed by the equations 

(2.27) 

(2.28) 

F~O(Q)  = , + a ) ~ 2  = - a 2 , p )  

F2@b) = f y ( b ) ~ 2  = b2&b). 

(2.29) 

(2.30) 
A further relation satisfied by these projection operators is 

(sab)-'FD (2.31) a -2m(a)- b-2m'b) = 

(2.32) 
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For an arbitrary four-vector g, = (g, g4 = igo), the two-flat components produced 
by these projection operators may be written out in terms of the electromagnetic field 
three-vectors E and B. The results are 

(0'"'g)i =- (a2+b2) -* [ (B .g )Bi+(E .g )Ei  - (b2+B2)gi  +go(EXB)i] ,  (2.34) 

(2.35) (0(')g)4 = i(a + b2)-'[(E x B . g ) +  (b  - E2)g0], 
and 

(O'b'g)i = (a2  + b2)- ' [ (B.  g)Bi + ( E .  g)Ei + (U' - B 2 ) g i  + go(E X B)i] ,  (2.36) 

(2.37) 

The effect of the projection operators becomes especially simple in two limiting cases 
to be described below. 

( 1 9 ' ~ ) g ) ~  = i(a2+ b2)-'[-(E x B .  g ) + ( a 2  +E2)go].  

In the limit in which E + 0, then b2 + 0, and a 2 +  B2 .  One then obtains 

(6'"'g)j + K 2 [ B  x (g x B)]i, (2.38) 

(o'b'g)i + K 2 ( B .  g)&, (19'b'g)4 + g4. (2.39) 

(0'a)g)4 + 0,  
and 

Thus, in this limit, 
projects out the component of g parallel to B. 

projects out the component of g perpendicular to B, and O(b) 

In the other limit in which B + 0, then a2 + 0, and b2 + E 2 .  One then obtains 

(0'")g)j + K 2 [ E  x (g x E ) ] ,  (2.40) 

(o'b'g)i + g)Ei, (0'b'g)4 + g4. (2.41) 

So, in this limit, projects out the component of g perpendicular to E, and 19'~) 
projects out the component of g parallel to E. 

Thus it is a remarkable fact that if only one of the three-vectors E, B is non-zero, 
the projection operators and db' respectively project out the three-vectors 
perpendicular to and parallel to the non-zero field. Hence, with respect to these 
limiting situations, one may characterise 0") as the perpendicular projection opera- 
tor, and O(b) as the parallel projection operator. 

In general, as a consequence of equation (2.26), it follows that four-vectors 
projected out by the two different projection operators are orthogonal, i.e. that 

gt'h:' = 0 ,  (2.42) 

(19(a)g)4 + 0 ,  
and 

where we have adapted the notation 

, (2.43) g ( Q ) ,  @"Ig, h ( b )  ~ &b)h 

in which g and h represent four-vectors. 
For the special case a = 0, b # 0, the covariant projection operators become 

db)- F 2 / b 2 ,  
a-0 

-(FD)'/b2, 
a-0 

while for the special case b = 0, a f 0, these operators become 
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Recently, for applications in which E .  B = ab = 0, Derfler (1976) has introduced 
operators, which in our notation may be written as (b2 - a ) F and - (b2 - a2)(FD)2, 
in order to generalise the concept of perpendicular and parallel projections. It is 
readily seen that our set of covariant projection operators reduces to his set in the 
appropriate limit. 

2 -1 2 

3. Dynamics of a charged particle in constant fields 

3.1. Dynamics of the projected components 

For a particle of charge e, rest mass m, moving in an electromagnetic field described by 
the tensor F and acted upon by an additional (non-electromagnetic) four-vector force 
field g, the covariant equation of motion (neglecting radiation reaction) for the 
four-vector momentum p is 

d e 
d r  me 
- p =- Fp + g. (3.1) 

Here p = m dxldr  (in component form p,, = m dx,/dr), where r is the proper time. 
In this section it shall be assumed that all elements of F and g have no spatial or 

temporal dependence. This restriction on g requires that it be zero since the relativis- 
tic condition pWg,  = 0 forces g to have a non-constant behaviour for p being non- 
constant. Thus, the constant field equation that we are dealing with is, 

d e 
d r  me 
-p=-Fp. (3.2) 

Now, this equation can be directly integrated to give p = {exp[(e.r/mc)F]}p(O), where 
the exponential operator may be simplified using equation (2.11). Then, the resulting 
equation can be integrated again to give the particle's four-vector position as a 
function of proper time. 

Alternatively, equation (3.2) may be solved by employing the projection operators 
6,) and 19'~' of the previous section. Decomposing p = p ( , ) + ~ ( ~ ) ,  and recognising that 
the projection operators commute with d /d r  and F, one sees that 

Thus the two projections of the motion are completely uncoupled from each other. 
Furthermore, from equations (2.27) and (2.28), it follows that 

(3.4) 

Thus the ' a  projection' behaves like a harmonic oscillator with frequency 

w, = ea/mc, (3.6) 

while the ' b  projection' exhibits an exponential proper time behaviour characterised 
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by an inverse time constant 

hb = eb/mc. 

Thus from equations (3.4) through (3.7) it follows that 

~ ( ~ ' ( 7 )  = (cos w a T ) p ( a ) ( ~ ) +  a-'(sin ~ , T ) F ~ ' ~ ' ( O ) ,  

p(b' (T)  = (cosh hbT)p'b'(o)+ b-'(sinh hbT)Fp'b'(o). 

Using the relations 

(a2+b2)Fo(a'=  a(aF+sbFD),  

(a' + b2)"b'= b(bF - saFD), 

(3.7) 

(3.10) 

the preceding relations become 

(a2  + b')p'"'(~)  = {(sin w , . r ) [ ( a ~  + s b ~ ~ ) p ( ~ ) ]  - (cos w = T ) [ ( F ~  - b21)p (0 ) ] )  

and 

(3.11) 

(U2+b2)pfb'(T)={(sinh hbT)[(bF-SUFD)p(0)]+ (cosh hbT) [ (F2+U21)p (0 ) ] } .  (3.12) 

Note that if E .  B = 0 but E 2  # B 2  so that a and b are not zero simultaneously, the 
limits obtained for both ~ ( " ( 7 )  and ~ ' ~ ' ( 7 )  are well behaved if either a + 0 or b + 0. 
However, if a and b are both zero, then neither p ( " ) ( ~ )  nor ~ ( ~ ' ( 7 )  exist in this 
simultaneous limit, but the combination p ( ~ )  = p ( " ) ( ~ ) +  P ' ~ ) ( T )  is well behaved, yield- 
ing 

(3.13) 

In the limit b / a  << 1 and also with Ip/p41 << IE/BI, the quantity p'b'(0)/m reduces to 
the usually cited (cf Schmidt 1966, p 9) non-relativistic ( E  x B ) / B 2  drift velocity 
attributable to the constant electric field. (Note. By making the replacement E + 
&/e, the non-relativistic equation of motion dp/dt = ( e / c ) ( E  + D x B )  changes into 
that describing a charged particle in a constant B field in the presence of a constant 
gravitational force G. Thus, such a replacement in the drift velocity gives the cor- 
responding expression for this situation (cf Schmidt 1966, p lo).) 

Now, integrating equations (3.11) and (3.12) we obtain the two different pro- 
jections of the four-vector position. The results are: 

m ( a  * + b ' ) x  ( a ) ( T )  

= (20:' (sin w a 7 / 2 ) ' [ ( a ~  + s b ~ ~ ) p ( ~ ) l  

-U:' (sin u , T ) [ ( F ' - ~ ' z ) ~ ( o ) ] -  m ( F 2 - b 2 1 ) x ( 0 ) } ,  (3.14) 

m (a + b ' ) x ( ~ ) ( T )  

={2Ab'(sinh hb./2)2[(bF-sUFD)p(0)] 

+ h a 1  (sinh hbT)[ (F2+a21)p(0) ]+  m(F2+U21)X(0)} .  (3.15) 

In principle one may solve for T in terms of the time t via x4 = ict = x ~ ' ( T ) + x $ ~ ' ( T ) ,  

and then express all functional relationships in terms of the time t. 
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For the ' U '  projection, the oscillatory functions of T may be eliminated between 

(3.16) 

Similarly, for the ' b y  projection, the hyperbolic functions of T may be eliminated 
between equations (3.12) and (3.15) to yield ad  orbit equation for the 'b' projected 
motion: 

(3.17) 

Finally, using equation (2.3 l ) ,  the two preceding orbit equations for the separate 

(3.18) 

equations (3.11) and (3.14) to yield an orbit equation for the ' U '  projected motion: 

"0, ( X ( , ) ( T ) -  X ' " ' ( 0 ) )  = -F(p'"'(T) - p ( a ) ( o ) ) .  

mbhb ( ~ ( ~ ' ( 7 ) -  ~ ' ~ ' ( 0 ) )  = F(p'b'(~)-p'b'(0)).  

projected motions may be combined to give the total motion orbit relation 

( e / c ) (x  (7)- ~ ( 0 ) )  = -(E W ' F ~ M T )  - P ( o ) ) ,  

or, multiplying by F, 

( e / c )F(x (T)  - x ( 0 ) )  = P ( 7 )  -p(O).  (3.19) 

(Note. The right-hand side of equation (3.18) is well defined as ( E .  B ) +  0, since in this 
limit, ( p ( ~ ) - p ( o ) ) - * F  operating on a well behaved four-vector. Thus, since by 
equation (2.6), FDF = - ( E .  B)I, the limit of equation (3.18) becomes just the afore- 
mentioned well behaved four-vector.) 

3.2. Guiding centre motion 

In the usual treatment of the non-relativistic motion of a charged particle undergoing 
oscillatory motion while being subjected to the influence of constant electromagnetic 
fields as well as, perhaps, an additional constant non-electromagnetic force, it has 
become customary to decompose the motion into two parts, one part referring to the 
'guiding centre' about which the oscillation takes place, and the other part referring to 
the oscillatory motion itself. In this section we will relate the covariant generalisations 
of these concepts to the ' U '  and '6' projections of the motion described in the 
preceding section. 

Letting R represent the four-vector position of the guiding centre and r represent 
the four-vector displacement of the actual position from the guiding centre, one may 
write 

(3.20) 

We may take the defining characteristic of r(7)  to be that it time averages to zero over 
a cycle of the oscillatory motion. In terms of our previous decomposition x ( T ) =  

x ( , ' ( T ) + x ( ~ ' ( T ) ,  we see by reference to the explicit solutions, equations (3.14) and 
(3.15), or more generally from the equations of motion (3.4) and ( 3 . 9 ,  that r ( 7 )  is just 
that part of ~ " ( 7 )  that oscillates with period l/o,. (Note, for oscillatory motion to 
occur, a (and hence w,)  is non-zero.) Thus, we may extract from equation (3.1) the 
oscillatory component, and relate it to the x ( ~ )  projection by 

r(T) = x ( ~ ' ( T ) - - ~ ( ~ ' =  {(mw.)-'[(sin o,T)~(~)(o)-(cos ~ , T ) F ~ ' " ' ( O ) I )  (3.21) 

where q(Q')  is the initial constant given by 

x ( 7 )  = R (T )+  r (7) .  

(3.22) 

Note that r(7)  depends only on the initial condition p'"'(0) and is completely 
independent of the initial condition x ( 0 ) .  
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The guiding centre solution itself is 

R(T)'X(b)(7)+q(o).  (3.23) 

Designating a derivative with respect to proper time by a dot over the quantity 

(3.24) 

involved, we find that the oscillatory and guiding centre momenta are, respectively 

mi(r)  = p(a) (r )  = (cos ~ , r ) p ( ~ ) ( ~ ) +  a-'(sin w,T)F~Q"(o), 

and 

m d  (7) = p ( b ) ( T )  = (cosh A b 7 ) p ' b ' ( o ) +  b-l(sinh hbT)Fp'b'(o). (3.25) 

The quantity R (0) is the 'drift' four-velocity of the guiding centre. 
As an alternative to using the actual particle's proper time r, one might employ 

(Hellwig 1955) the guiding centre proper time 7 6  defined as the proper time which 
would elapse for a ficticious particle on the guiding centre world-line. However it is 
easy to show that 

c2(drb/dT)' -d,& = c 2 +  f,i, = -m -2  p ,  ( 6 )  (o)pjLb'(o) 

so, for the situation of constant fields under discussion, rate relations involving 7 6  

would only amount to a uniform scale change in proper time measurement. 
Both the oscillatory and the guiding centre momenta satisfy the same form of 

equations of motion: 

(3.26) 

the difference being in the respective initial conditions. We note that although the 
rate of change of the guiding centre momentum (d/dT)(mfi(r)) does not have an 'a' 
projection, the initial conditions for d(r )  are such that there is a constant 'a' pro- 
jection contribution to the guiding centre momentum d ( T )  itself. 

Separate orbit equations also exist for the oscillatory and guiding centre motions. 
From equation (3.21) and (3.24) there follows the simplest orbit relations 

aw,r(r) = -F~(T), i ( ~ )  = (e /mc)Fr(r) .  (3.27) 

Since F is antisymmetric, it immediately follows that the oscillatory four-position and 
four-momentum are orthogonal, i.e. 

r w ( T ) i , ( T ) =  0. (3.28) 

One may also obtain the guiding centre orbit equation 

bhb(R (7)- R (0))  = F ( f i ( ~ ) - d  (0)) (3.29) 

which may be written in the equivalent form 

( ~ A J ? ( ~ ) - F A  (7)) = s ~ ( ~ u ) - ~ F ~ ~ ( o ) +  ~ A ~ x ( o ) .  (3.30) 

The current associated with the oscillatory motion of the charged particle (which in 
ordinary three-space is motion in an elliptical path) gives rise to an electromagnetic 
moment. One may define the antisymmetric generalised electromagnetic moment 
tensor A associated with the oscillating component of the motion by its matrix 
elements 

(3.31) A,, = 4(e/c)(r,iV - r,i,). 



1080 D M Fradkin 

It is easy to show that, as a consequence of equations (3.26) and (3.27), the elec- 
tromagnetic moment tensor A is a constant, i.e. that 

dA/d.r = 0. (3.32) 

On the other hand, the symmetric tensor S with elements 

s,, = t (e /c>(r , i ,  + rvi ,)  (3.33) 

satisfies 
d2S/d.r2 = -(2wa) 2 s, (3.34) 

so it has twice the frequency of r. Consequently, 

( S )  = 0 

where ( ) signifies a time average over the gyration period of the oscillatory motion. 

the oscillatoty Lorentz invariant i,i, and the electromagnetic moment tensor: 
Use of the orbit equation (equation (3.27)) leads to the following relation between 

iNi, = m-'F,,,A,,. (3.36) 

For the special case E -* 0, the antisymmetric tensor A becomes 

4eiikAjk -* -41p x BI2Bi/mB4 = -kmBi/B (3.37) 

Ai4 + 0.  

Here w m  signifies the magnitude of the magnetic moment. In this limit, i4-*0,  so 
equation (3.36) reduces to the oscillatory kinetic energy relation 

+ m i .  i -+ kmB. (3.38) 

4. Guiding centre approximation for inhomogeneous fields 

4.1.  Equations of motion 

If the electromagnetic fields F that a charged particle passes through are inhomo- 
geneous, it may still be useful to analyse the dynamics in terms of a guiding centre 
decomposition provided that the field changes are small during a gyration period. 
Taking the gyration period to be approximately l / w a ,  the criterion may be stated as 

d 1 d.r 
- (field quantity) << wa (field quantity). (4.1) 

An alternative way of stating this condition is that during a period of the oscillatory 
motion, any explicitly field dependent quantity may be represented by its proper time 
average over that period. 

To obtain the equations of motion of the guiding centre, we once again start from 
equation (3.1) 

e -_  dp - - Fp + g 
d.r me (3.1') 

where we now allow a non-electromagnetic force g which is assumed to vary slowly 
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with respect to a gyration period. We use the decomposition 

p = m ( d  +i )  (4.2) 

where R refers to the position of the guiding centre and r refers to the displacment of 
the particle from the guiding centre. This displacement r is characterised by ( r )  = 0 
where ( ) refers to a time average over a gyration period. Now in equation (3.1'), we 
expand F and g ,  which may be functions of x = R + r ,  about R so that to first order 

Here the superscript notation (R) signifies 'at the position of the guiding centre'. 
Substituting equations (4.2) and (4.3) into (3.1), we obtain 

(4.4) 

With the understanding that all explicitly field dependent quantities are to be evalu- 
ated at R, we will now suppress the superscript notation (R). Also, by the following 
manipulations, we can write the third term of equation (4.4) in an alternative way. 
Interchanging A and v, one may write 

which upon substitution for (d/ax,)F,, via Maxwell's equation 

(4.6) 

yields 

Thus, using the antisymmetry of F and the definitions (equations (3.31) and (3.33)) of 
the antisymmetric electromagnetic moment tensor A and the symmetric tensor S, we 
obtain 

mc ZF,. ) r A r u = -  * m ' ( a  -Fwy ax, ) 
Thus, equation (4.4) becomes 

(4.7) 
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where 

e 
(4.9) 

In the expression for H,, the quantity SA" may be evaluated in zero order since 
(a/ax,)F,, is already a first-order correction in the inhomogeneity. Thus, through first 
order, the time average of the H, over a gyration period vanishes, i.e. 

(H,) = 0. (4.10) 

Additionally, if the time constant A b  is considerably less than the frequency wa (i.e. 
b < a )  so that no appreciable change in the guiding centre motion occurs over an 
oscillation cycle, then (R,) may be taken to be R, itself. At any event, redefining R 
as (R,) and referring to this quantity as the guiding centre, we see that the guiding 
centre motion is governed by the equation of motion 

(4.11) 

(In a somewhat different form, this equation has been derived earlier by Hellwig 
(1955) and Vandervoort (1960).) 

The initial condition for this equation is found by the following reasoning. Restric- 
ting the use of this equation (for the moment) to changes taking place within one cycle, 
and making the replacement 

R = +c(esab)-'FDg 

the one-cycle dynamical equation becomes 

d e - & = - F& + (higher-order terms) 
d r  mc 

in which dg/dr is included in the higher-order terms. Comparison with the analogous 
constant field dynamical equation (equation (3.26)) and reference to its initial condi- 
tion (cf equations (3.25) and (4.2)) yields 

& ( O )  = O'b'[m-'p(0)- c(esab)-'FDg] 

which with the aid of equation (2.32) may be manipulated to give the result 

(4.12) 

This initial condition, to be used in conjunction with equation (4.11), is correct to zero 
order. It is important, however, to retain first-order terms as well as the functional 
dependence of field dependent quantities in the dynamical equation (4.1 I), since 
although the inhomogeneous corrections per gyration cycle are assumed to be small, 
over a large number of cycles those corrections could constructively add and become 
comparable to zero-order expressions. In any specific problem, the functional form 
describing the inhomogeneous fields must be known or estimated before equation 
(4.1 1) can be (numerically) integrated. 

For the special case, g + 0 and E + 0, one sees with the aid of equation (3.36) that 
the inhomogeneous contribution in equation (4.11) to the spatial component of the 

1 (b) R (0)  = m - o p (0)  + (mawa )-lFO'"'g. 
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guiding centre equation of motion becomes the usually cited (cf Schmidt 1966, p 14) 
expression 

taking curl B + 0. 

4.2. Drift velocities 

Multiplying by -(mc/esab)FD, one may invert equation (4 .11)  and solve for the 
guiding centre velocity 

-s D .. S a 
wab 2mwab ax, A,, = - F,,  ( R ,  - m-'g,)+- FEAT,  (- F ~ ~ ) .  (4 .13)  

From this expression can be obtained those quantities that have been termed 'drift 
velocities'. For example, by applying the operator 0'") (which for small E projects out 
the perpendicular component to the field vector B )  and employing equation (2.32),  we 
obtain 

RE) = -(mawa)-lFw,(ml??) -g(y l l ' )+(2m~w,) - 'F, ,B~)A,~ (" F+).  (4 .14)  

The term involving (ml??) - g ? ) )  is the 'acceleration drift' (as defined by Northrop 
1961) and the term involving (a/axE)FTA is the 'gradient drift'. When all electromag- 
netic fields are strictly constant, g?' represents the leading contribution since I?:) is 
of higher order (cf reasoning for equation (4.12)).  

When small inhomogeneities are present, H ? )  is at most first order in small 
quantities, so equation (4 .14)  has the structure 

ax, 

) + (maw4)-'FFvg?). (a) - at most first-order correction 
A @ - (in inhomogeneities 

Since the (proper) time derivative of an inhomogeneity dependent term produces a 
term which is an order smaller, it follows from the preceding equation that 
2:) ~ @ W R U  

d d 
dT d7 

= - [(maw,)-'F,,gl")] - (- 0," '")) R" to first order. 

Thus, to first order one can replace I?'") in equation (4 .14)  by this expression. 
Non-relativistically -iR4 = mc >> IRI, so for E / B  << 1 ,  
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This first-order contribution to the acceleration drift is due to the fact that the 'a'  
projection direction is not constant, i.e. the field lines are not straight but are curved. 
Replacing 2'"' in equation (4 .14)  by this expression, one obtains (through first order) 

d [ d r  Rt' = -(maw,)-'F,, - [(uwa)-'FU,g?)] - m + (maw,)-lF,,g?) 

(4 .15)  

Note that non-relativistically -i& = c >> IRjl, hence for EIB + 0, one obtains in this 
limit 

a 
ax€ 

+ (2maw,)-'F,,0$)A,A (- FWA). 

Also, in this limit the gradient drift becomes 

Thus, in the appropriate limit, the more general expressions reduce to those quoted by 
Northrop (1961) and Schmidt (1966). 

As we have seen in 9 3,  it is from the ' a '  projection and not the '6' projection of 
the four-vector velocity that the zero-order ' E  X B drift velocity' arises. Indeed, to 
zero order 

R;'=Q~",'R,, = 6 ; ~ ( m - ' p , - i , ) = m - ' Q ~ ~ p u  

since to zero order in inhomogeneities, i, is an 'a '  projection. Again, from equation 
(2.36) for I p I p 4 1 ~  EIB << 1, m -  1 Oj, ( b )  p v  -* cB-'(E x B ) j .  

4.3. Adiabatic moment invariance and guiding centre energy generalisations 

When field inhomogeneities are present, the orbit equation for the oscillatory motion 
must be of the form 

i = (e/mc)Fr + 
where r is a first-order (or higher) correction in the inhomogeneities. Thus, the 
quantity r , j ,  is of first order (or higher) and hence d/dT(r,i,) is of second order (or 
higher). But, 

d/dr(r,i,) = i,i, + r,?,, 

so substituting for ?& from equation (4.8)' which is correct through first order, and 
one-cycle time averaging the resultant expression, one obtains 

( i , jw)  = m-'FwU(AY,)+ (terms of first order). (4.16) 

In arriving at this result, we have used the fact that (r , )  = (3 , )  = (S, , )  = (r,SvA) = 
(r,A,A) = 0 to zero order, and we have assumed a conservative non-electromagnetic 
force field 

g ,  = -a v/ax,, (4.17) 
so that d V/d7 = -g,p, = 0. 
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Differentiating equation (4.16),  we obtain 

(4.18) d d 
- ( ir ir)  = m-'- (FFU(Aur))+ (terms of second order). d r  d r  

Another expression involving d/dr(iyir)  may be obtained from m-' d/dr(p,p,) = 
m-'p,g, = 0, which by setting p r  = m(R,  + ir),  and one-cycle time averaging yields 
the energy-momentum invariance relation 

d - [ t m  (d,d, + (i),))] = 0 + (terms of second order). 
d r  

(4 .19)  

However, multiplying equation (4 .8 )  by R,, then one-cycle averaging, one obtains 

(4.20) d d 
- ($md ,d , )  = $(AuA) (- FvA) +(terms of second order). 
d r  d r  

On subtracting this equation from the preceding one, it follows that 

(4 .21)  
d 

d r  - (i,i,) = m-'(AAU) +(terms of second order). 

Comparison of equation (4.21) with (4.18) leads one to the conclusion that through 
first order in inhomogeneity corrections, 

(4 .22)  

This relation is a covariant generalisation of the adiabatic invariance of the magnetic 
moment. Indeed, in the limit g + 0, E + 0, equation (4 .22)  reduces to 

B k  d(PmBdB)IdT = B(dwm/dT) = 0, 

from which it follows that pm is an adiabatic invariant. (Note. Vandervoort (1960) has 
discussed a quantity 47rp which he describes as the relativistic analogue of the 
magnetic flux through the region enclosed by the gyration. In terms of our notation 
(his equation (194)),  p = (2mw)-'FUAAA,. Although FuAAAu is not an invariant 
through first order, p is because U varies according to 6 = (2pm)-'puAAAu (which may 
be established from Vandervoort's analysis), so it follows (through first order) that 

Using the generalised adiabatic relation (equation (4 .22))  in equation (4 .20) ,  one 
obtains a generalised momentum-energy invariance relation involving only guiding 
centre quantities and the electromagnetic moment tensor, 

d 
- (+mR,d,, + + ( A A , ) F , A )  = 0. d r  

/.i = ( ~ ~ & J ) - ' F , A A A ~  = 0.)  

(4 .23)  

This expression, valid through first order in field inhomogeneity corrections, is 
equivalent to that given by Vandervoort (1960) (his equation (199))  who also showed 
that it followed as a consequence of the invariance of the square of the four-velocity. 
It follows that the relation between the particle's proper time r and the guiding centre 
proper time 76 no longer is uniformly proportional since (drb/dr)' now contains a 
non-constant first-order contribution. 
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